_images/pycsou.png https://zenodo.org/badge/277582581.svg

Pycsou-sphere is an extension module of the Python 3 package Pycsou for solving linear inverse problems on the sphere. The extension offers implementations of spherical zonal convolution operators as well as the spherical harmonic and Fourier-Legendre transforms (all compatible with Pycsou’s interface for linear operators). It also provides numerical routines for computing the Green kernels of common spherical pseudo-differential operators and generating spherical meshes/point sets.

This module heavily relies and follows similar conventions as the healpy package for spherical signal processing with Python.

Content

The package is organised as follows:

  1. The module pycsphere.linop implements the following common spherical linear operators:

pycsphere.linop.ZonalSphericalConvolution(size)

Zonal spherical convolution.

pycsphere.linop.SphericalPooling(nside_in, …)

Spherical pooling operator.

pycsphere.linop.DiscreteSphericalLaplacian(…)

Discrete spherical Laplacian.

pycsphere.linop.DiscreteSphericalGradient(…)

Discrete spherical gradient.

pycsphere.linop.SphericalHarmonicTransform(n_max)

Spherical Harmonic Transform (SHT).

pycsphere.linop.FourierLegendreTransform(…)

Fourier Legendre Transform (FLT).

  1. The module pycsphere.mesh provides routines for generating spherical meshes:

pycsphere.mesh.FibonacciPointSet(N[, lonlat])

Fibonacci point set.

pycsphere.mesh.HEALPixPointSet(nside[, …])

HEALPix point set.

pycsphere.mesh.RandomPointSet(N[, seed, lonlat])

Random uniform point set.

  1. The module pycsphere.green provides numerical routines for computing the Green kernels of common spherical pseudo-differential operators:

pycsphere.green.ZonalGreenSobolev(alpha, …)

Zonal Green kernel of the Sobolev operator \((\alpha^2\mbox{Id} -\Delta_{\mathbb{S}^2})^{\beta/2}\).

pycsphere.green.ZonalGreenFractionalLaplaceBeltrami(…)

Zonal Green kernel of the Fractional Laplace-Beltrami operator \((-\Delta_{\mathbb{S}^2})^{\beta/2}\).

pycsphere.green.ZonalGreenIteratedLaplaceBeltrami(…)

Zonal Green kernel of the iterated Laplace-Beltrami operator \(\Delta_{\mathbb{S}^2}^{k}\).

pycsphere.green.ZonalGreenBeltrami(k[, …])

Zonal Green kernel of the Beltrami operator \(\partial_k=k(k+1)\mbox{Id}+\Delta_{\mathbb{S}^2}\).

pycsphere.green.ZonalGreenIteratedBeltrami(k)

Zonal Green kernel of the Beltrami operator \(\partial_{0\cdots k}=\partial_0\cdots\partial_k\).

pycsphere.green.ZonalMatern(k[, epsilon, …])

Matern zonal Green kernel.

pycsphere.green.ZonalWendland(k[, epsilon, …])

Wendland zonal Green kernel.